新闻资讯

新闻资讯 行业动态

动态规划系列四:三角形最小路径和

编辑:008     时间:2020-02-20

前面章节我们通过题目“最长上升子序列”以及"最大子序和",学习了DP(动态规划)在线性关系中的分析方法。这种分析方法,也在运筹学中被称为“线性动态规划”,具体指的是 “目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值”。这点大家作为了解即可,不需要死记,更不要生搬硬套!

在本节中,我们将继续分析一道略微区别于之前的题型,希望可以由此题与之前的题目进行对比论证,进而顺利求解!

1. 三角形最小路径和

题目:给定一个三角形,找出自顶向下的最小路径和。

示例:

每一步只能移动到下一行中相邻的结点上。

例如,给定三角形:

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

2. 自顶向下图解分析

首先我们分析题目,要找的是三角形最小路径和,这是个啥意思呢?假设我们有一个三角形:[[2], [3,4], [6,5,7], [4,1,8,3]]


那从上到下的最小路径和就是2-3-5-1,等于11。

由于我们是使用数组来定义一个三角形,所以便于我们分析,我们将三角形稍微进行改动:


这样相当于我们将整个三角形进行了拉伸。这时候,我们根据题目中给出的条件:每一步只能移动到下一行中相邻的结点上。其实也就等同于,每一步我们只能往下移动一格或者右下移动一格。将其转化成代码,假如2所在的元素位置为[0,0],那我们往下移动就只能移动到[1,0]或者[1,1]的位置上。假如5所在的位置为[2,1],同样也只能移动到[3,1]和[3,2]的位置上。如下图所示:

题目明确了之后,现在我们开始进行分析。题目很明显是一个找最优解的问题,并且可以从子问题的最优解进行构建。所以我们通过动态规划进行求解。首先,我们定义状态:

dpi : 表示包含第i行j列元素的最小路径和

我们很容易想到可以自顶向下进行分析。并且,无论最后的路径是哪一条,它一定要经过最顶上的元素,即[0,0]。所以我们需要对dp0进行初始化。

dp0 = 0位置所在的元素值

继续分析,如果我们要求dpi,那么其一定会从自己头顶上的两个元素移动而来。


如5这个位置的最小路径和,要么是从2-3-5而来,要么是从2-4-5而来。然后取两条路径和中较小的一个即可。进而我们得到状态转移方程:

dpi = min(dpi-1,dpi-1) + trianglei

但是,我们这里会遇到一个问题!除了最顶上的元素之外,


最左边的元素只能从自己头顶而来。(2-3-6-4)


最右边的元素只能从自己左上角而来。(2-4-7-3)

然后,我们观察发现,位于第2行的元素,都是特殊元素(因为都只能从[0,0]的元素走过来)


我们可以直接将其特殊处理,得到:

dp1 = triangle1 + triangle0

dp1 = triangle1 + triangle0

最后,我们只要找到最后一行元素中,路径和最小的一个,就是我们的答案。即:

l:dp数组长度

result = min(dp[l-1,0],dp[l-1,1],dp[l-1,2]....)

综上我们就分析完了,我们总共进行了4步:

  • 定义状态
  • 总结状态转移方程
  • 分析状态转移方程不能满足的特殊情况。
  • 得到最终解

3. 代码分析

分析完毕,代码自成:

func minimumTotal(triangle [][]int) int {
    if len(triangle) < 1 {
        return 0 }
    if len(triangle) == 1 {
        return triangle[0][0] }
    dp := make([][]int, len(triangle))
    for i, arr := range triangle {
        dp[i] = make([]int, len(arr))
    }
    result := 1<<31 - 1 dp[0][0] = triangle[0][0] dp[1][1] = triangle[1][1] + triangle[0][0] dp[1][0] = triangle[1][0] + triangle[0][0] for i := 2; i < len(triangle); i++ {
        for j := 0; j < len(triangle[i]); j++ {
            if j == 0 {
                dp[i][j] = dp[i-1][j] + triangle[i][j] } else if j == (len(triangle[i]) - 1) {
                dp[i][j] = dp[i-1][j-1] + triangle[i][j] } else {
                dp[i][j] = min(dp[i-1][j-1], dp[i-1][j]) + triangle[i][j] }
        }  
    }
    for _,k := range dp[len(dp)-1] {
        result = min(result, k)
    }
    return result
}

func min(a, b int) int {
    if a > b {
        return b
    }
    return a
}


运行上面的代码,我们发现使用的内存过大。我们有没有什么办法可以压缩内存呢?通过观察我们发现,在我们自顶向下的过程中,其实我们只需要使用到上一层中已经累积计算完毕的数据,并且不会再次访问之前的元素数据。绘制成图如下:

优化后的代码如下:

func minimumTotal(triangle [][]int) int {
    l := len(triangle) if l < 1 { return 0 } if l == 1 { return triangle[0][0]
    }
    result := 1<<31 - 1 triangle[0][0] = triangle[0][0] triangle[1][1] = triangle[1][1] + triangle[0][0] triangle[1][0] = triangle[1][0] + triangle[0][0] for i := 2; i < l; i++ { for j := 0; j < len(triangle[i]); j++ { if j == 0 { triangle[i][j] = triangle[i-1][j] + triangle[i][j]
            } else if j == (len(triangle[i]) - 1) { triangle[i][j] = triangle[i-1][j-1] + triangle[i][j]
            } else { triangle[i][j] = min(triangle[i-1][j-1], triangle[i-1][j]) + triangle[i][j]
            }
        }  
    } for _,k := range triangle[l-1] {
        result = min(result, k)
    } return result
}

func min(a, b int) int { if a > b { return b
    } return a
}



原文链接:https://segmentfault.com/a/1190000021739367

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

回复列表

相关推荐